Abstract

The present study described that the systematic mining and identification of potentially active β-glucosidase family enzymes toward indican, which extracted from the plant Polygonum tinctorium as one of precursors of production for indigo-blue. Some of the mined enzymes were previously identified as glycosyl hydrolases or putative enzymes with unknown properties. In addition, there were no reports on the hydrolytic activity toward indican. In order to confirm the activity, we analyzed the activity on indican or related substrates in selective medium and amplified four genes from mined strains using PCR, then cloned into E. coli. Using a related fluorescent substrate MUG, we verified successful cloning through checking the expression of genes and comparing characteristics with wild-type strains. Then, using recombinant enzymes and chemically synthesized pure indican or the plant extract, it was confirmed that indican was readily converted into indigo-blue. For the overexpression of an enzyme derived from Shinorhizobium meliloti, which was found to be the most active through comparative analyses, we subcloned the gene in pMAL-c2X vector and expressed it as a MBP fusion protein. The resulting enzyme was overexpressed (>35% of whole cell protein) and found mainly in soluble fraction. The purified enzyme was determined to be a monomer with calculated molecular mass of 52 kDa and showed a specific activity (0.8 unit/mg protein) on the plant extract including indican. These results demonstrated that the mined enzymes not only could be an alternative resource for indigo-blue production, but also might be useful in the production of indigo from the plant indican by a single process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.