Abstract

Abstract For a time-dependent control system we consider a “reversed” minimum time problem, which consists in finding the minimum time needed by the system, whose state is initially located in a given set, to reach a given point. We show that the minimum time function constructed in this way is a unique viscosity solution of a static first order PDE, provided that, at every point of the extended phase space, admissible velocities form a convex set containing zero in the interior. We also describe a version of the Fast Marching Method (FMM) that effectively solves this PDE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.