Abstract

This paper presents the equivalence between minimal time and minimal norm control problems for internally controlled heat equations. The target is an arbitrarily fixed bounded, closed, and convex set with a nonempty interior in the state space. This study differs from [G. Wang and E. Zuazua, SIAM J. Control Optim., 50 (2012), pp. 2938--2958], where the target set is the origin in the state space. When the target set is the origin or a ball, centered at the origin, the minimal norm and the minimal time functions are continuous and strictly decreasing, and they are inverses of each other. However, when the target is located in other place of the state space, the minimal norm function may be no longer monotonous and the range of the minimal time function may not be connected. These cause the main difficulty in our study. We overcome this difficulty by borrowing some idea from the classical rising sun lemma (see, for instance, Lemma 3.5 and Figure 5 on pp. 121--122 in [E. M. Stein and R. Shakarchi, Real Analy...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.