Abstract

Abstract The main goal of this work is the construction of a class of controller, which employs directly a Lagrangian formulation to resolve the classical brachistochrone problem, this allows to obtain an optimal controller which reaches in a minimum time the stabilization of an isothermal continuous stirred tank reactor, whose chemical kinetic model is based on the power law. The proposed methodology is compared with an input/output linearizing which achieve asymptotic and exponential closed-loop convergence, sliding-mode controller with a finite time convergence and an exact gradient optimal control to compare the time convergence performance. Numerical experiments show the satisfactory performance of the proposed controller, despite sustained disturbances in the concentration input feed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.