Abstract

An optimal control scheme is designed to improve repeatability by minimizing the loading effects induced by the common processing condition of placement of a semiconductor substrate at ambient temperature on a large thermal-mass bake plate at processing temperature. A model-based optimal controller is presented based on minimum time control strategy for minimizing the worst-case deviation from a nominal temperature set-point during the load disturbance condition. This results in a predictive controller that performs a pre- determined heating sequence prior to the arrival of the substrate as part of the resulting feedforward/feedback strategy to eliminate the load disturbance. The controller is easy to design and implement for conventional thermal processing equipment. The minimum time control formulation also makes it more suitable for on-line implementation such as automatic on-line tuning of feedforward controller. Experimental results are performed for a commercial conventional bake plate and depict an order-of-magnitude improvement in the settling time and the integral-square temperature error between the optimal predictive controller and a feedback controller for a typical load disturbance.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.