Abstract

A finite-interval stochastically balanced realization is analyzed based on the idealized assumption that an exact finite covariance sequence is available. It is proved that a finite-interval balanced realization algorithm [Maciejowski, J. M. (1996). Parameter estimation of multivariable systems using balanced realizations. In S. Bittanti, & G. Picci (Eds.), Identification, adaptation, learning (pp. 70–119). Berlin: Springer] provides stable minimum phase models, if the size of the interval is at least two times larger than the order of a minimal realization. New algorithms for finite-interval stochastic realization and stochastic subspace identification are moreover derived by means of block LQ decomposition, and the stability and minimum phase properties of models obtained by these algorithms are considered. Numerical simulation results are also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.