Abstract
A solution f for cooperative games is a minimum norm solution, if the space of games has a norm such that f(v) minimizes the distance (induced by the norm) between the game v and the set of additive games. We show that each linear solution having the inessential game property is a minimum norm solution. Conversely, if the space of games has a norm, then the minimum norm solution w.r.t. this norm is linear and has the inessential game property. Both claims remain valid also if solutions are required to be efficient. A minimum norm solution, the least square solution, is given an axiomatic characterization.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have