Abstract

The k-component Poisson regression mixture with random effects is an effective model in describing the heterogeneity for clustered count data arising from several latent subpopulations. However, the residual maximum likelihood estimation (REML) of regression coefficients and variance component parameters tend to be unstable and may result in misleading inferences in the presence of outliers or extreme contamination. In the literature, the minimum Hellinger distance (MHD) estimation has been investigated to obtain robust estimation for finite Poisson mixtures. This article aims to develop a robust MHD estimation approach for k-component Poisson mixtures with normally distributed random effects. By applying the Gaussian quadrature technique to approximate the integrals involved in the marginal distribution, the marginal probability function of the k-component Poisson mixture with random effects can be approximated by the summation of a set of finite Poisson mixtures. Simulation study shows that the MHD estimates perform satisfactorily for data without outlying observation(s), and outperform the REML estimates when data are contaminated. Application to a data set of recurrent urinary tract infections (UTI) with random institution effects demonstrates the practical use of the robust MHD estimation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.