Abstract

An explicit expression is given in the frequency domain for the minimum free energy related to a particular state of a linear rigid heat conductor with memory effects in the constitutive equations, using the fact that this quantity coincides with the maximum recoverable work obtainable from that state. The constitutive equations for the internal energy and the heat flux are expressed as linear functionals of the histories of temperature and its gradient, respectively, together with the present value of the latter quantity. Another equivalent expression for the minimum free energy is also deduced and used to derive explicit formulae for a discrete spectrum model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.