Abstract

A rigid linear heat conductor with memory conductor is considered. An evolution problem which arises in studying the thermodynamical state of the material with memory is considered. Specically, the time evolution of the temperature distribution within a rigid heat conductor with memory is investigated. The constitutive equations which characterize heat conduction with memory, involve an integral term since the temperature’s time derivative is connected to the heat ux gradient. The integro-dierenti al problem, when initial and boundary conditions are assigned, is studied to obtain existence and uniqueness results. Key tools, turn out to be represented by suitable expressions of the minimum free energy which allow to construct functional spaces which are both meaningful under the physical as well as the analytic viewpoint since therein the existence and uniqueness results can be established. Finally, conditions which guarantee exponential decay at innity are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.