Abstract

Considering that most studies depend on theoretical equations to determine the minimum reinforcement ratio, only a few studies on this ratio are available. Therefore, a more defined limit should be suggested to design codes by performing additional investigations and experimental studies on this limit. This study examines the behavior of high‐strength concrete (HSC) beams with low reinforcing steel ratios to establish a limit for the lowest flexural reinforcement ratio that will ensure ductility. Experiments were performed on 12 reinforced HSC beams with a concrete compressive strength of 99 MPa, which were divided into three categories depending on their size. Each category comprised four beam reinforcement ratios (0%, 0.13%, 0.33%, and 0.65%), and two main parameters (beam size and reinforcement ratio) were investigated. Furthermore, to ensure flexural failure at the middle‐span, adequate web reinforcing was used in all the beams and tested under a four‐point load until they exhibited failure. Based on regression analysis, an equation was proposed for the rupture modulus of reinforced beams. The findings suggest that, in addition to the yielding strength of the reinforcements and the compressive strength of the concrete, the depth of the beams should be considered when computing the minimum flexural reinforcement of beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.