Abstract

AbstractGiven a set of rectangles embedded in the plane, we consider the problem of adjusting the layout to remove all overlap while preserving the orthogonal order of the rectangles. The objective is to minimize the displacement of the rectangles. We call this problem Minimum-Displacement Overlap Removal (mdor). Our interest in this problem is motivated by the application of displaying metadata of archaeological sites. Because most existing overlap removal algorithms are not designed to minimize displacement while preserving orthogonal order, we present and compare several approaches which are tailored to our particular usecase. We introduce a new overlap removal heuristic which we call reArrange. Although conceptually simple, it is very effective in removing the overlap while keeping the displacement small. Furthermore, we propose an additional procedure to repair the orthogonal order after every iteration, with which we extend both our new heuristic and PRISM, a widely used overlap removal algorithm. We compare the performance of both approaches with and without this order repair method. The experimental results indicate that reArrange is very effective for heterogeneous input data where the overlap is concentrated in few dense regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.