Abstract

It is known that, given an edge-weighted graph, a maximum adjacency ordering (MA ordering) of vertices can find a special pair of vertices, called a pendent pair, and that a minimum cut in a graph can be found by repeatedly contracting a pendent pair, yielding one of the fastest and simplest minimum cut algorithms. In this paper, we provide another ordering of vertices, called a minimum degree ordering (MD ordering) as a new fundamental tool to analyze the structure of graphs. We prove that an MD ordering finds a different type of special pair of vertices, called a flat pair, which actually can be obtained as the last two vertices after repeatedly removing a vertex with the minimum degree. By contracting flat pairs, we can find not only a minimum cut but also all extreme subsets of a given graph. These results can be extended to the problem of finding extreme subsets in symmetric submodular set functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.