Abstract
본 연구에서는 환경음 인식 성능의 향상을 위하여 GMM의 훈련 방식에 MCE 도입을 제안하였다. 이는 환경음 데이터 모델링에 사용할 분류오류함수를 정의할 때 해당 클래스의 로그우도 뿐 아니라 다른 클래스의 로그우도도 같이 고려함으로써 변별력 있는 분류가 이뤄질 수 있게 한다. 모델의 파라미터는 전체 클래스를 고려한 손실함수를 정의하고, GPD(generalized probabilistic descent)알고리즘을 이용하여 추정하였다. 제안된 방법의 인식 성능 비교를 위해 모두 9가지 환경음을 전처리 과정과 MFCC(mel-frequency cepstral coefficients)를 이용하여 12차 특징을 추출하고, 이를 혼합 성분의 수에 따라 GMM 분류 실험을 행하였다. 실험 결과에 따르면 혼합 성분을 19개 사용한 경우에서 MCE 훈련 방식이 평균 87.06%의 인식률로 가장 좋은 성능을 보였다. 이 결과로 제안한 MCE 훈련 방식이 환경음 인식에서 GMM의 훈련 방식으로 효과적으로 사용될 수 있음을 확인하였다. In this paper, we proposed the MCE as a GMM training method to improve the performance of environmental sounds recognition. We model the environmental sounds data with newly defined misclassification function using the log likelihood of the corresponding class and the log likelihood of the rest classes for discriminative training. The model parameters are estimated with the loss function using GPD(generalized probabilistic descent). For recognition performance comparison, we extracted the 12 degrees features using preprocessing and MFCC(mel-frequency cepstral coefficients) of the 9 kinds of environmental sounds and carry out GMM classification experiments. According to the experimental results, MCE training method showed the best performance by an average of 87.06% with 19 mixtures. This result confirmed us that MCE training method could be effectively used as a GMM training method in environmental sounds recognition.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have