Abstract
Closed population capture-recapture estimation of population size is difficult under heterogeneous capture probabilities. We introduce the minimum chi-square method which can handle multi-occasion capture-recapture data. It complements likelihood methods with elements that can lead to confidence intervals and assessment of goodness-of-fit. We conduct a comprehensive study on the minimum chi-square method for estimating the size of a closed population using multiple-occasion capture-recapture data under heterogeneous capture probability. We also develop two different bootstrap techniques that can be combined with any underlying estimator, be it the minimum chi-square estimator or a likelihood estimator, to perform useful inference for estimating population size. We present a simulation study on the minimum chi-square method and apply it to analyze white stork multiple capture-recapture data. Under certain conditions, the chi-square method outperforms the likelihood based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.