Abstract

We determine the optimal investment strategy in a financial market for an individual whose random consumption is correlated with the price of a risky asset. Bayraktar and Young consider this problem and show that the minimum probability of lifetime ruin is the unique convex, smooth solution of its corresponding Hamilton-Jacobi-Bellman equation. In this paper we focus on determining the probability of lifetime ruin and the corresponding optimal investment strategy. We obtain approximations for the probability of lifetime ruin for small values of certain parameters and demonstrate numerically that they are reasonable ones. We also obtain numerical results in cases for which those parameters are not small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.