Abstract

The mass of a multilayer cylindrical shell, formed from a composite material with an elastic filler and designed for strength and stability under the combined action of axial compression and external pressure, is minimized. The problem is formulated as one of nonlinear programming and is solved by Rossen's method of projection gradients. The strength of the material is established from analysis of the strength of the layers making up the entire bundle. Failure of an individual layer is determined from Malmeister's criterion. The structure of a shell with different external loads and the dependence of minimal mass on the stiffness of the filler and on the volume coefficient of reinforcement are investigated in numerous examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.