Abstract
AbstractWe consider a stochastic partially observable system that can switch between a normal state and a transient abnormal state before entering a persistent abnormal state. Only the persistent abnormal state requires alarms. The transient and persistent abnormal states may be similar in appearance, which can result in excess false alarms. We propose a partially observable Markov decision process model to minimize the false alarm rate, subject to a given upper bound on the expected alarm delay time. The cost parameter is treated as the Lagrange multiplier, which can be estimated from the bound of the alarm delay. We show that the optimal policy has a control‐limit structure on the probability of persistent abnormality, and derive closed‐form bounds for the control limit and present an algorithm to specify the Lagrange multiplier. We also study a specialized model where the transient and persistent abnormal states have the same observation distribution, in which case an intuitive “watchful‐waiting” policy is optimal. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 320–334, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.