Abstract
We consider the problem of minimizing a composite convex function with two different access methods: an oracle, for which we can evaluate the value and gradient, and a structured function, which we access only by solving a convex optimization problem. We are motivated by two associated technological developments. For the oracle, systems like PyTorch or TensorFlow can automatically and efficiently compute gradients, given a computation graph description. For the structured function, systems like CVXPY accept a high level domain specific language description of the problem, and automatically translate it to a standard form for efficient solution. We develop a method that makes minimal assumptions about the two functions, does not require the tuning of algorithm parameters, and works well in practice across a variety of problems. Our algorithm combines a number of well-known ideas, including a low-rank quasi-Newton approximation of curvature, piecewise affine lower bounds from bundle-type methods, and two types of damping to ensure stability. We illustrate the method on stochastic optimization, utility maximization, and risk-averse programming problems, showing that our method is more efficient than standard solvers when the oracle function contains much data.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have