Abstract
Corpus-based methods for natural language processing often use supervised training, requiring expensive manual annotation of training corpora. This paper investigates methods for reducing annotation cost by sample selection. In this approach, during training the learning program examines many unlabeled examples and selects for labeling (annotation) only those that are most informative at each stage. This avoids redundantly annotating examples that contribute little new information. This paper extends our previous work on committee-based sample selection for probabilistic classifiers. We describe a family of methods for committee-based sample selection, and report experimental results for the task of stochastic part-of-speech tagging. We find that all variants achieve a significant reduction in annotation cost, though their computational efficiency differs. In particular, the simplest method, which has no parameters to tune, gives excellent results. We also show that sample selection yields a significant reduction in the size of the model used by the tagger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.