Abstract
We demonstrated a 35% enhancement in the efficiency of inverted solar cells as a result of increased open-circuit voltage and fill factor by adsorbing an ultrathin layer of a ruthenium dye N719 on an aluminum-doped zinc oxide (ZnO-Al) electron collecting interfacial layer. The interface modification with N719 changes the charge injection levels as indicated by ultraviolet photoemission spectroscopy. The efficiency of inverted solar cells comprising a bulk heterojunction photo-active film of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester has increased from ∼2.80% to 3.80% upon employing the dye modification of the electrode interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.