Abstract
In this paper, we propose a model that minimizes deviations of input and output weights from their means for efficient decision-making units in data envelopment analysis. The mean of an input or output weight is defined as the average of the maximum and the minimum attainable values of the weight when the efficient decision making unit under evaluation remains efficient. Alternate optimal weights usually exist in the linear programming solutions of efficient decision-making units and the optimal weights obtained from most of the linear programming software are somewhat arbitrary. Our proposed model can yield more rational weights without a priori information about the weights. Input and output weights can be used to compute cross-efficiencies of decision-making units in peer evaluations or group decision-making units, which have similar production processes via cluster analysis. If decision makers want to avoid using weights with extreme or zero values to access performance of decision-making units, then choosing weights that are close to their means, may be a rational choice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.