Abstract

We present an approach to reduce the convective flow in an electrostatically levitated liquid droplet to such an extent that diffusion is the dominant mechanism for mass transport, thus enabling direct measurements of atomic diffusion in reactive liquids at elevated temperatures. Convection is minimized by containerless processing, and reducing temperature variations in the sample. The diffusion tracer is deposited in situ in the electrostatic levitation device used for containerless processing. Uniform noncontact heating of the sample is achieved by laser heating with multiple beams arranged symmetrically, e.g., in a tetrahedral geometry. The expected temperature variations and the resulting convection flows are estimated for a Zr-based glass-forming alloy. The analysis suggests that diffusion experiments are possible throughout the entire undercooled liquid temperature range of this alloy and, in microgravity, up to 50K above the liquidus temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.