Abstract
In this paper, we consider an optimal control problem in which the control is almost smooth and the state and control are subject to terminal state constraints and continuous state and control inequality constraints. By introducing an extra set of differential equations for this almost smooth control, we transform this constrained optimal control problem into an equivalent problem involving both control function and system parameter vector as decision variables. Then, by the control parametrization technique and a time scaling transformation, the equivalent problem is approximated by a sequence of constrained optimal parameter selection problems, each of which is a finite dimensional optimization problem. For each of these constrained optimal parameter selection problems, a novel exact penalty function method is constructed by appending penalized constraint violations to the cost function. This gives rise to a sequence of unconstrained optimal parameter selection problems; and each of which can be solved by existing optimization algorithms or software packages. Finally, a practical container crane operation problem is solved, showing the effectiveness and applicability of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial & Management Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.