Abstract
In this paper, we propose a simple model to investigate the quantum defect between pump and signal photons in thulium-doped fiber amplifiers. The achievable quantum defects are limited by several factors, i.e., pump and signal wavelengths, fiber length, area ratio between inner cladding and core, and gain and absorption at signal and pump wavelengths, respectively. Through the proposed model, we find that the quantum defect can reach as low as 1%-level. We also find that the smaller area ratio between inner cladding and core, the lower quantum defect can be obtained. The ultimate pumping approach will be core pumping. This can be realized through tandem pumping the thulium-doped fiber by the other fiber source at shorter wavelength with high brightness. Finally, it is necessary to optimize the pump and signal wavelengths and match the fiber length to obtain the lowest quantum defect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.