Abstract
In this article, we consider convergence rates in functional linear regression with functional responses, where the linear coefficient lies in a reproducing kernel Hilbert space (RKHS). Without assuming that the reproducing kernel and the covariate covariance kernel are aligned, convergence rates in prediction risk are established. The corresponding lower bound in rates is derived by reducing to the scalar response case. Simulation studies and two benchmark datasets are used to illustrate that the proposed approach can significantly outperform the functional PCA approach in prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.