Abstract

For the canonical problem of estimating a multivariate normal mean under squared-error-loss, this article addresses the problem of selecting a minimax shrinkage estimator when vague or conflicting prior information suggests that more than one estimator from a broad class might be effective. For this situation a new class of alternative estimators, called multiple shrinkage estimators, is proposed. These estimators use the data to emulate the behavior and risk properties of the most effective estimator under consideration. Unbiased estimates of risk and sufficient conditions for minimaxity are provided. Bayesian motivations link this construction to posterior means of mixture priors. To illustrate the theory, minimax multiple shrinkage Stein estimators are constructed which can adaptively shrink the data towards any number of points or subspaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.