Abstract
In this work we show how to obtain the minimal Whitney stratification of the discriminant of finitely determined map germs from \((\mathbb {C}^m,0)\) to \((\mathbb {C}^p,0)\), of corank one if \(n<p\), and only with \(A_k\) singularities, when \(m = n+p\) with \( n \ge 0\). We apply the theory developed by Gaffney which shows how to compute a Whitney stratification of discriminants of any finitely determined holomorphic map germ in the nice dimensions of Mather, or in its boundary. For the pairs cited above we show that both stratifications coincide. We also compute the local Euler obstruction at 0 in a class of discriminants of finitely determined map germs from \(\mathbb {C}^{n+p}\) to \(\mathbb {C}^p\) with \(n\ge 0\) and only with \(A_k\) singularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.