Abstract
This paper is devoted to the minimal time control problem for fed-batch bioreactors, in presence of an inhibitory product, which is released by the biomass proportionally to its growth. We first consider a growth rate with substrate saturation and product inhibition, and we prove that the optimal strategy is fill and wait (bang-bang). We then investigate the case of the Jin growth rate which takes into account substrate and product inhibition. For this type of growth function, we can prove the existence of singular arc paths defining singular strategies. Several configurations are addressed depending on the parameter set. For each case, we provide an optimal feedback control of the problem (of type bang-bang or bang-singular-bang). These results are obtained gathering the initial system into a planar one by using conservation laws. Thanks to Pontryagin maximum principle, Green's theorem, and properties of the switching function, we obtain the optimal synthesis. A methodology is also proposed in order to implement the optimal feeding strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.