Abstract
In ethanol fermentation, instantaneous biomass yield of the yeast Saccharmoyces cerevisiae was found to decrease (from 0.156 to 0.026) with increase in ethanol concentration (from 0 to 107 g/L), indicating a definite relationship between biomass yield and product inhibition. A suitable model was proposed to describe this decrease which incorporates the kinetic parameters of product inhibition rather than pure empirical constants. Substrate inhibition was found to occur when substrate concentration is above 150 g/L. A similar definite relationship was observed between substrate inhibition and instantaneous biomass yield. A simple empirical model is proposed to describe the declines in specIfic growth rate and biomass yield due to substrate inhibition. It is observed that product inhibition does not have any effect on product yield whereas substrate inhibition significantly affects the product yield, reflecting a drop in overall product yield from 0.45 to 0.30 as the initial substrate concentration increases from 150 to 280 g/L. These results are expected to have a significant influence in formulating optimum fermentor design variables and in developing an effective control strategy for optimizing ethanol producitivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have