Abstract
We develop geometrical models of vision consistent with the characteristics of the visual cortex and study geometric flows in the relevant model geometries. We provide a novel sub-Riemannian model of the primary visual cortex, which models orientation-frequency selective phase shifted cortex cell behavior and the associated horizontal connectivity. We develop an image enhancement algorithm using sub-Riemannian diffusion and Laplace-Beltrami flow in the model framework. We provide two geometric models for multi-scale orientation map and orientation-frequency preference map construction which employ Bargmann transform in high dimensional cortical spaces. We prove the uniqueness of the solution to sub-Riemannian mean curvature flow equation in the Heisenberg group geometry. An iterative diffusion process followed by a maximum selection mechanism was proposed by Citti and Sarti in the sub-Riemannian setting of the roto-translation group. They conjectured that this two-fold procedure is equivalent to a mean curvature flow. However a complete proof was missing, even in the Euclidean setting. We prove in the Euclidean setting that this two fold procedure is equivalent to mean curvature flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.