Abstract
We propose a minimal seesaw extension to simultaneously account for realistic neutrino mass and mixing, the baryon asymmetry of the Universe via leptogenesis and a viable dark matter relic density, in which two right-handed neutrinos are coupled to a dark Dirac fermion and complex scalar field, both charged under a global U(1)D symmetry. As a concrete example, we consider the Littlest Seesaw model which describes neutrino mass and mixing and accounts for leptogenesis, thereby fixing the neutrino Yukawa couplings and right-handed neutrino masses. By considering the freeze-in production mechanism of dark matter, we explore the parameter space of right-handed neutrino portal couplings and dark particle masses which give the correct dark matter relic abundance, focussing on the case of a superheavy Dirac fermion dark matter particle, with a mass around 1010 GeV . Such a FIMPzilla can provide a successful explanation of the dark matter relic abundance, with its production reliant on neutrino Yukawa couplings over much of the parameter space, depending on the assumed dark particle masses, and the reheat temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.