Abstract

The family of rings of the form \frac{\mathbb{Z}_{4}\left \langle x,y \right \rangle}{\left \langle x^2-a,y^2-b,yx-xy-2(c+dx+ey+fxy) \right \rangle} is investigated which contains the generalized Hamilton quaternions over $\Z_4$. These rings are local rings of order 256. This family has 256 rings contained in 88 distinct isomorphism classes. Of the 88 non-isomorphic rings, 10 are minimal reversible nonsymmetric rings and 21 are minimal abelian reflexive nonsemicommutative rings. Few such examples have been identified in the literature thus far. The computational methods used to identify the isomorphism classes are also highlighted. Finally, some generalized Hamilton quaternion rings over $\Z_{p^s}$ are characterized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.