Abstract

Let R be a ring with identity and J(R) denote the Jacobson radical of R. A ring R is called J-reversible if for any a, $$b \in R$$ , $$ab = 0$$ implies $$ba \in J(R)$$ . In this paper, we give some properties of J-reversible rings. We prove that some results of reversible rings can be extended to J-reversible rings for this general setting. We show that J-quasipolar rings, local rings, semicommutative rings, central reversible rings and weakly reversible rings are J-reversible. As an application it is shown that every J-clean ring is directly finite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.