Abstract

Theoretical description of the charge transfer (CT) exciton across the donor-acceptor interface without the use of a completely localized hole (or electron) is a challenge in the field of organic solar cells. We calculate the total wavefunction of the CT exciton by solving an effective two-particle Schrodinger equation for the inhomogeneous dielectric interface. We formulate the magnitude of the CT and construct a minimal model of the CT exciton under the breakdown of inversion symmetry. We demonstrate that both a light hole mass and a hole localization along the normal to the dielectric interface are crucial to yield the CT exciton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.