Abstract
How tightly bound charge transfer (CT) excitons dissociate at organic donor-acceptor interfaces has been a long-standing question in the organic photovoltaics community. Recently, it has been proposed that exciton delocalization reduces the exciton binding energy and promotes exciton dissociation. In order to understand this mechanism, it is critical to resolve the evolution of the exciton's binding energy and coherent size with femtosecond time resolution. However, because the coherent size is just a few nanometers, it presents a major experimental challenge to capture the CT process simultaneously in the energy, spatial, and temporal domains. In this work, the challenge is overcome by using time-resolved photoemission spectroscopy. The spatial size and electronic energy of a manifold of CT states are resolved at the zinc phthalocyanine (ZnPc)-fullerene (C60) donor-acceptor interface. It is found that CT at the interface first populates delocalized CT excitons with a coherent size of 4 nm. Then, this delocalized CT exciton relaxes in energy to produce CT states with delocalization sizes in the range of 1-3 nm. While the CT process from ZnPc to C60 occurs in about 150 fs after photoexcitation, the localization and energy relaxation occur in 2 ps. The multidimensional view on how CT excitons evolve in time, space, and energy provides key information to understand the exciton dissociation mechanism and to design nanostructures for effective charge separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.