Abstract
Appropriate mechanical load is essential for tendon homeostasis and optimal tissue function. Due to technical challenges in achieving physiological mechanical loads in experimental tendon model systems, the research community still lacks well-characterized models of tissue homeostasis and physiological relevance. Toward this urgent goal, we present and characterize a novel ex vivo murine tail tendon explant model. Mouse tail tendon fascicles were extracted and cultured for 6 days in a load-deprived environment or in a custom-designed bioreactor applying low magnitude mechanical load (intermittent cycles to 1% strain, at 1 Hz) in serum-free tissue culture. Cells remained viable, as did collagen structure and mechanical properties in all tested conditions. Cell morphology in mechanically loaded tendon explants approximated native tendon, whereas load-deprived tendons lost their native cell morphology. These losses were reflected in altered gene expression, with mechanical loading tending to maintain tendon specific and matrix remodeling genes phenotypic of native tissue. We conclude from this study that ex vivo load deprivation of murine tendon in minimal culture medium results in a degenerative-like phenotype. We further conclude that onset of tissue degeneration can be suppressed by low-magnitude mechanical loading. Thus a minimal explant culture model featuring serum-free medium with low mechanical loads seems to provide a useful foundation for further investigations. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1383-1390, 2018.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.