Abstract

Botulinum toxin A (BoNT-A) has emerged as a treatment option for temporomandibular disorder (TMD). By injecting BoNT-A into the masseter muscle, it is possible to reduce mechanical loading on the temporomandibular joint (TMJ). However, numerous prior studies have indicated excessive reduction in mechanical loading can have detrimental effects on TMJ cartilage. This study proposes that autophagy, a process influenced by mechanical loading, could play a role in BoNT-A-induced mandibular condyle cartilage degeneration. To explore this hypothesis, we employed both BoNT-A injection and an excessive biting model to induce variations in mechanical loading on the condyle cartilage of C57BL/6 mice, thereby simulating an increase and decrease in mechanical loading, respectively. Results showed a significant reduction in cartilage thickness and downregulation of Runt-related transcription factor 2 (Runx2) expression in chondrocytes following BoNT-A injection. In vitro experiments demonstrated that the reduction of Runx2 expression in chondrocytes is associated with autophagy, possibly dependent on decreased YAP expression induced by low mechanical loading. This study reveals the potential involvement of the YAP/LC3/Runx2 signaling pathway in BoNT-A mediated mandibular condylar cartilage degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call