Abstract

The role of chemical changes and mass transfer in the formation of granular fault cores across carbonate strata is still unclear. Thirteen granular fault cores across strata of dolostone from Sperlonga, central Italy, are analyzed by chemical and physical methods. The analyzed faults are reverse or transpressional, up to about 1 m thick, and flanked by a host rock affected by a widely developed solution cleavage. Grain size distributions of fault core rocks are determined by a sieving procedure for grains larger than 63 μm. Mechanisms of grain comminution are inferred by microscopic analyses on a set of thin sections obtained from epoxy‐impregnated fault rock samples. Concentrations of calcium and magnesium in the fault cores and in the adjacent host rock are determined by titrimetry. Results show that both the breccia and the gouge forming the fault cores show little evidence for mass transfer, regardless of the fault type and grain size distribution of fault rocks. We interpret these results as chiefly the effect, within the fault core, of a strongly reduced permeability, which impeded significant mass transfer processes through solute transport. It follows that grain comminution occurred mostly by brittle processes such as crushing and abrasive wear. Previous work suggests that these results are rather generalizable; some exceptions, however, compel further research on the role of circulating fluids and mass transfer in the formation of carbonate fault rocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call