Abstract
The minimal-length paradigm, a possible implication of quantum gravity at low energies, is commonly understood as a phenomenological modification of Heisenberg's uncertainty relation. We show that this modification is equivalent to a cut-off in the space conjugate to the position representation, i.e. the space of wave numbers, which does not necessarily correspond to momentum space. This result is generalized to several dim ensions and noncommutative geometries once a suitable definition of the wave number is provided. Furthermore, we find a direct relation between the ensuing bound in wave-number space and the minimal-length scale. For scenarios in which the existence of the minimal length cannot be explicitly verified, the proposed framework can be used to clarify the situation. Indeed, applying it to common models, we find that one of them does, against all expectations, allow for arbitrary precision in position measurements. In closing, we comment on general implications of our findings for the field. In particular, we point out that the minimal length is purely kinematical such that, effectively, it is not influenced by the overlying dynamics and the choice of Hamiltonian.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have