Abstract

Let $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{N}(\Bbbk )$ , where $\Bbbk$ is an algebraically closed field of characteristic $p>0$ , and $N\in \mathbb{Z}_{{\geqslant}1}$ . Let $\unicode[STIX]{x1D712}\in \mathfrak{g}^{\ast }$ and denote by $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ the corresponding reduced enveloping algebra. The Kac–Weisfeiler conjecture, which was proved by Premet, asserts that any finite-dimensional $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ -module has dimension divisible by $p^{d_{\unicode[STIX]{x1D712}}}$ , where $d_{\unicode[STIX]{x1D712}}$ is half the dimension of the coadjoint orbit of $\unicode[STIX]{x1D712}$ . Our main theorem gives a classification of $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ -modules of dimension $p^{d_{\unicode[STIX]{x1D712}}}$ . As a consequence, we deduce that they are all parabolically induced from a one-dimensional module for $U_{0}(\mathfrak{h})$ for a certain Levi subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ ; we view this as a modular analogue of Mœglin’s theorem on completely primitive ideals in $U(\mathfrak{g}\mathfrak{l}_{N}(\mathbb{C}))$ . To obtain these results, we reduce to the case where $\unicode[STIX]{x1D712}$ is nilpotent, and then classify the one-dimensional modules for the corresponding restricted $W$ -algebra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call