Abstract

Kobayashi’s multiplicity-free theorem asserts that irreducible unitary highest weight representations $\pi$ are multiplicity-free when restricted to any symmetric pairs if $\pi$ is of scalar type. The Hua–Kostant–Schmid–Kobayashi branching laws embody this abstract theorem with explicit irreducible decomposition formulas of holomorphic discrete series representations with respect to symmetric pairs. In this paper, we study the ‘classical limit’ (geometry of coadjoint orbits) of a special case of these representation theoretic theorems in the spirit of the Kirillov–Kostant–Duflo orbit method. \\ First, we consider the Corwin–Greenleaf multiplicity function $n (\mathcal{O}^{G},\,\mathcal{O}^{K})$ for Hermitian symmetric spaces $G/K$. The first main theorem is that $n(\mathcal{O}^{G},\,\mathcal{O}^{K}) \le 1$ for any $G$-coadjoint orbit $\mathcal{O}^{G}$ and any $K$-coadjoint orbit $\mathcal{O}^{K}$ if $\mathcal{O}^{G} \cap \sqrt{-1} ([\mathfrak{k}, \mathfrak{k}] + \mathfrak{p})^{\bot} \ne \emptyset$. Here, $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ is the Cartan decomposition of the Lie algebra $\mathfrak{g}$ of $G$. The second main theorem is a necessary and sufficient condition for $n (\mathcal{O}^{G},\,\mathcal{O}^{K}) \ne 0$ by means of strongly orthogonal roots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call