Abstract
Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we consider the minimal number of vertices of such triangulations. First, we show that every hyperbolic surface of genus g has a simplicial Delaunay triangulation with O(g) vertices, where edges are given by distance paths. Then, we construct a class of hyperbolic surfaces for which the order of this bound is optimal. Finally, to give a general lower bound, we show that the Omega (sqrt{g}) lower bound for the number of vertices of a simplicial triangulation of a topological surface of genus g is tight for hyperbolic surfaces as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.