Abstract

We investigate boundary-driven phase transitions in open driven diffusive systems. The generic phase diagram for systems with short-ranged interactions is governed by a simple extremal principle for the macroscopic current, which results from an interplay of density fluctuations with the motion of shocks. In systems with more than one extremum in the current-density relation, one finds a minimal current phase even though the boundaries support a higher current. The boundary layers of the critical minimal current and maximal current phases are argued to be of a universal form. The predictions of the theory are confirmed by Monte Carlo simulations of the two-parameter family of stochastic particle hopping models of Katz, Lebowitz, and Spohn and by analytical results for a related cellular automaton with deterministic bulk dynamics. The effect of disorder in the particle jump rates on the boundary layer profile is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.