Abstract

Travel time of marked fluid particles along arbitrary streamlines in arbitrary porous streamtubes is estimated from below based on the Cauchy–Bunyakovskii (Schwartz) and Jensen inequalities. In homogeneous media the estimate is strict and expressed through the length of the streamline, hydraulic conductivity, porosity and the head fall. The minimum is attained at streamlines of unidirectional flow. The bounds for heterogeneous soils, non-Darcian flows and unsaturated media are also written. If such bounds are attained the corresponding trajectories become brachistochrones . For example, in a two-layered aquifer and seepage perpendicular to the layers there is a unique conductivity–porosity ratio which makes a broken streamline brachistocronic . Similarly, if conductivities of two layers are fixed there is a unique incident angle between flow in one medium and the interface which makes a refracted streamline brachistocronic .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.