Abstract

We study the approximation of minimum travel time paths in time dependent networks. The travel time on each link of the network is a piecewise linear function of the departure time from the start node of the link. The objective is to find the minimum travel time to a destination node d, for all possible departure times at source node s. Dehne et al. proposed an exact output-sensitive algorithm for this problem [6, 7] that improves, in most cases, upon the existing algorithms. They also provide an approximation algorithm. In [10, 11], Foschini et al. show that this problem has super-polynomial complexity and present an e–approximation algorithm that runs \(O( {\lambda \over \epsilon} \log ({T_{max} \over T_{min}}) \log({L \over \lambda \epsilon T_{min}}))\) shortest path computations, where λ is the total number of linear pieces in travel time functions on links, L is the horizontal span of the travel time function and T min and T max are the minimum and maximum travel time values, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.