Abstract

Many bacteria produce small, spherical minicells that lack chromosomal DNA and therefore are unable to proliferate. Although minicells have been used extensively by researchers as a molecular tool, nothing is known about why bacteria produce them. Here, we show that minicells help Escherichia coli cells to rid themselves of damaged proteins induced by antibiotic stress. By comparing the survival and growth rates of wild-type strains with the E. coliΔminC mutant, which produces excess minicells, we found that the mutant was more resistant to streptomycin. To determine the effects of producing minicells at the single-cell level, we also tracked the growth of ΔminC lineages by microscopy. We were able to show that the mutant increased the production of minicells in response to a higher level of the antibiotic. When we compared two sister cells, in which one produced minicells and the other did not, the daughters of the former had a shorter doubling time at this higher antibiotic level. Additionally, we found that minicells were more likely produced at the mother's old pole, which is known to accumulate more aggregates. More importantly, by using a fluorescent IbpA chaperone to tag damage aggregates, we found that polar aggregates were contained by and ejected with the minicells produced by the mother bacterium. These results demonstrate for the first time the benefit to bacteria for producing minicells.IMPORTANCE Bacteria have the ability to produce minicells, or small spherical versions of themselves that lack chromosomal DNA and are unable to replicate. A minicell can constitute as much as 20% of the cell's volume. Although molecular biology and biotechnology have used minicells as laboratory tools for several decades, it is still puzzling that bacteria should produce such costly but potentially nonfunctional structures. Here, we show that bacteria gain a benefit by producing minicells and using them as a mechanism to eliminate damaged or oxidated proteins. The elimination allows the bacteria to tolerate higher levels of stress, such as increasing levels of streptomycin. If this mechanism extends from streptomycin to other antibiotics, minicell production could be an overlooked pathway that bacteria are using to resist antimicrobials.

Highlights

  • IntroductionSpherical minicells that lack chromosomal DNA and are unable to proliferate

  • Many bacteria produce small, spherical minicells that lack chromosomal DNA and are unable to proliferate

  • Our study shows that ΔminC E. coli produced minicells at a higher rate than wild-type strains and increased the production rate in the presence of streptomycin (Fig. 1C)

Read more

Summary

Introduction

Spherical minicells that lack chromosomal DNA and are unable to proliferate. We show that minicells help Escherichia coli cells to rid themselves of damaged proteins induced by antibiotic stress. We show that bacteria gain a benefit by producing minicells and using them as a mechanism to eliminate damaged or oxidated proteins. Growth inhibitors, and radiation can all cause damage to cells, the correlation between stress and the first observations of minicells clearly points to a possible causal relationship. Another possible association between minicells and damage is indicated by the molecular mechanism used by bacterial cells to control cell division and the formation of protein aggregates

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.