Abstract
A new capacitive field-effect microsensor based on a porous EIS (electrolyte-insulator-semiconductor) structure is presented. The porous silicon sensor was prepared using standard techniques of semiconductor processing. A well-defined macroporous layer was formed on silicon by electrochemical etching and a SiO 2 Si 3N 4 sandwich was deposited as insulating and pH-sensitive layer. The porous sensor exhibits a high, near-Nernstian pH sensitivity of about 54 mV per decade in the concentration range from pH 4 to pH 8, similar to a planar non-porous EIS structure with the same layer sequence. The enlargement of the active sensor area (surface) due to the porous structure increases the measured capacitance and thus allows a scaling down of the sensor. The preparation of biosensors based on the same structure is demonstrated by immobilization of the enzyme penicillinase as biosensitive component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.