Abstract
The medical industry is clearly and urgently in need of development of advanced packaging that can meet the growing demand for miniaturization, high-speed performance, and flexibility for handheld, portable, in vivo, and implantable devices. To accomplish this, new packaging structures need to be able to integrate more dies with greater function, higher I/O counts, smaller die pad pitches, and high reliability, while being pushed into smaller and smaller footprints. As a result, the microelectronics industry is moving toward alternative, innovative approaches as solutions for squeezing more function into smaller packages. In the present report, key enablers for achieving reduction in size, weight, and power (SWaP) in electronic packaging for a variety of medical applications are discussed. These enablers include materials selection, embedded passives and active devices, System-in-Package (SiP) designs, and flex circuits. Manufacturing methods and materials for producing advanced organic substrates and flex along with ultra fine pitch assemblies are discussed. A case study detailing the fabrication of a flexible substrate for use in an intravascular ultrasound (IVUS) catheter demonstrates how the challenges of miniaturization are met. These challenges include use of ultra-thin polymer films, extreme fine-feature circuitization, and assembly processes to accommodate die having reduced die pad pitch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.