Abstract

In this work we study the limits of miniaturization of a 90-degree hybrid coupler working in the L, C and S bands, with respect to a number of performance parameters aimed at its application for balanced detection. We investigate the main effects responsible for the degradation of the performance of the devices during miniaturization, and establish the minimal dimension that such devices can have without significant degradation for photonic applications such as balanced detection. The miniaturized device in InP generic technology has a footprint of only 2200μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , more than 5 times smaller than the conventional device used as reference. The scaling approach is based on the use of the number of propagating modes which are sustained in both the miniaturized MMI and port waveguides as scaling parameters. This approach allows us to generalize the miniaturization problem from a specific platform and offers a methodology which is flexible and transferable to multiple platforms. We tested the scaling methodology based on the number of modes in other platforms commonly used in integrated photonics, such as Si/SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (SOI), TriPleX or polymer platforms, obtaining comparable results and proving the universality of our approach, finally we performed a fabrication tolerance analysis of the miniaturized devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.